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ABSTRACT

A 3-D diagnostic model for continental shelf circulation studies is presented. The
model is based on the linearized hydrodynamic equations subject to surface stress, density
gradient, and remote (boundary) forcing. Finite elements are used to resolve real topogra-
phy. Solutions are obtained in the frequency domain, including the limit of zero {requency.
A test case based on analytic solutions for tidal front circulation demonstrates the suc-
cessful representation of sensitive baroclinic circulation. Representative applications to
the Gulf of Maine region, including the Bay of Fundy, Georges Bank, and a portion of
the Scotian Shelf, are shown for wind, alongshelf transport, and tidal front circulation on
Georges Bank.



INTRODUCTION

In a series of previous papers we have explored aspects of 3-D continental shelf mod-
eling using the finite element method (FEM) in order to obtain topographic resolution at
reasonable levels of discretization. In Lynch and Officer (1985; herein LO85) we present .
analytic solutions to the linearized harmonic equations and introduce an exact decoupling
strategy among horizontal and vertical modes which maintains the dependence of bottom
stress on bottom velocity. In Lynch and Werner (1987; herein LW8T) this strategy was
used with horizontal finite elements along with either analytic or FEM treatment of the
vertical. Therein, the 3-D FEM problem is reduced by the decoupling to sequential solu-
tions of a 2-D horizontal problem with conventional sparse, banded FEM matrix; and a
simple 1-D problem with tridiagonal matrix. As a result the 3-D problem scales effectively
as a 2-D FEM problem, without further simplifying the linearized equations. In Lynch
and Werner (1990; herein LW90) this same structure is exploited for more general time-
stepping problems, wherein semi-implicit calculations in each time step share the same
sequential 2-D/1-D structure without simplifying the nonlinear 3-D equations.

The present paper addresses the linearized harmonic problem. In LW87 we concen-
trated on tides and wind; here we extend the scope to that of a general diagnostic tool.
Specifically, we provide for a baroclinic pressure gradient; add a new boundary condition
for geostrophically balanced along-shelf flow; and include the computation of the vertical
velocity. We retain the general harmonic formulation, although the examples here empha-
size steady-state phenomena. We introduce an analytic test case for baroclinic verification;
and demonstrate a range of phenomena in the Gulf of Maine region.

Recent 3-D linearized diagnostic studies of coastal areas can be found in Askari et al.
(1989) and Hukuda et al. (1989). These 2 studies are related, in spirit, to the formulation

developed herein, although neither allows imposition of a general three-dimensional density
field.

THEORY

We solve the linearized 3-D shallow water equations with conventional hydrostatic
and Boussinesq assumptions, and eddy viscosity closure in the vertical. The density field
is presumed known and constitutes a fixed baroclinic pressure gradient. The response (3-D
velocity field plus barotropic pressure) to this forcing, combined with wind and barotropic
forcing at open water boundaries, is sought on detailed topography. For generality and
for compatibility with previous model development (LW87) we assume periodic-in-time
solutions of the form ¢(x,t) = Re(@(x)e’**), with Q the complex amplitude of ¢ and w
the frequency. The steady responses are simply the limiting case w = (.

The horizontal momentum equation is

juv+fxv--‘1(Nﬂ):G+R (1)
0z 0z
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in which
R{z,y,z) = ”'};q; f:) Vpdz is the baroclinic pressure gradient, assumed known

G(z,y) = —gV( is the barotropic pressure gradient, assumed unknown
p(z,y, z,t) is the fluid density

{(z,y) is the free surface elevaiion

V(z,y,2) is the horizontal velocity
W(r,y,z) is the vertical velocity

w is the radian frequency

7 is the imaginary unit, v/—1

h(z,y) is the bathymetric depth

f = f2 is the Coriolis vector

N(z,y,z) is the vertical eddy viscosity

g 1s gravity

(z,y) are the horizontal coordinates

z 1s the vertical coordinate, positive upward.
V is the horizontal gradient (8/0z, 3/8y)
h¥(z,y) is the atmospheric forcing

k is a linear bottom stress coefficient.

(Note that z = 0 at the undisturbed free surface; and z = —A at the bottom.) All
hydrodynamic variables are represented as complex amplitudes of time-periodic motions;
and throughout we indicate by an overbar the vertical average of any quantity. The vertical
average of (1} is

. _ k _
jwV+f><V+-};V(—h)=G+‘I'+R (4)
In addition we have the continuity equation
W v.v=o0 (5)
o0z
and its vertical average
Jw+ V- (hV)=0 (6)

We record also the weak form of (6):

(G ds) — (hV - Vi) = — f BV - gy ds 1)
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where () is a domain integral over (z,y); § ds is the enclosing boundary integral; i is the
unit normal, directed outward; and ¢;(,y) is an arbitrary weighting function. Note that
conventional horizontal boundary conditions will be enforced on either ¢ or AV - i to close
the boundary-value problem.

The momentum equation is stmplified by introduction of the surrogate velocity vari-
ables

=+J - r."_j

+ _YatiVy _ VeV

vhe S 5 (8)
Ve =vt+u7; iVy=vt—uv~, (9)

which removes the Coriolis coupling:

+
jlwE fr® ~ %(N%) =G*+R* Qo)
+
N% =hpT  (2=0) (11)
+
Na;z =kt (z=-h) (12)
with forcing terms defined as
Gt = g_i_i.z..lgl (13)
d);{;:d’x :i:.ﬂby (14)
2
e - Retiy as)

By inspection, the solution to (10-12) can be written as

Vi(z) = Gipli(z)+¢ipzi(z) + Pi¥(2) (16)
where the functions P each satisfy the simple diffusion equation (10), forced as follows:*
PE:G=1;4%=0;R=0.

PE:G=0;9=1,R=0.

* The distinction between P, and P; is maintained here for its interpretive content;
but is not necessary. The merger of P; into P3, by the alternate definition (Pai : G =
0;1 = ¥ R = R¥) allows use of all the formulae below with the simplification Pf = 0
everywhere.



PE:G=0;4%=0;R=R* (17)

Recovery of V from v is then straightforward, using (9):

+ ., p- +_ p-
V(z):G(M) _j(i__‘ol_)ixg
2 2
+, p- +_ p-
+\1'(——P2 5 )—j(—-—-——-P2 i )ix\I’

+2(Pf + P ) -is(P - 7 (18)

expressing a superposition of responses to barotropic, wind, and density gradient forcing.
Note that the six functions 1:’,-i can be obtained independently at any horizontal position
by any of several methods for solving the 1-D diffusion equation.

The unknown barotropic pressure gradient G = —¢V( in (18) is determined .by appli-
cation of the vertically averaged continuity equation (6). Substitution of (18} into (6) or
its weak form (7) eliminates V and produces a scalar Helmholtz-like equation in { alone.
The resulting weak form is

-V¢5a> -

+ 4 P- P+ _ p—
(G 83) + <[(f%5—)gwc —j(ﬁ-g—Pl—)i x ghV¢
B+ 4 P— p+ _ p— :
(5 e (B s .w,.>

—j{h\?-ﬁq&,‘ds+<
+< (13; t Pa‘)hf‘c - (ﬁ; - P;)hy] - v¢,-> (19)
This 2-D, horizontal equation is especially amenable to Galerkin finite element solution on

simple linear trianpgular elements. Its solution provides the barotropic pressure response

which accompanies the imposed wind, density field, and open-water barotropic boundary
conditions.

Integration of (10) from z = —h to z = 0, and use of (11,12), provides a useful relation
between 7+ and vE(—A):

j(w £ it —yp* + %ui(-—h) =G* + R (20)

(Recall that an overbar indicates a vertically averaged quantity.) As in LW87, we find for
the various Pi(z}):

- 1 k
Pli,z = m {1 - gpﬁz(_h)] (21)
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which may be used to avoid the calculation of the vertical averages.**

An alternate route to an equivalent statement of the horizontal problem is available
following LW87. This approach takes advantage of the fact that the bottom stress may
be expressed in terms of V, reducing the vertically averaged momentum equation to an
equivalent 2-D form. First, G* can be eliminated from (16) by use of its vertical average:

1 _ _

(23)

and therefore

)= (£ }E"")iai N (Pz(z) - Pl(z)%)iwi + (A - Pl(z)ﬁ—j)i' (24)

It follows that

kvE(=h) = 15ho* — a®hy* - gFh (25)
with
kPE(-h)
=gl SR L 26
iy (26)
af =rEPF %P;“(—h) (27)
§% = r2BE — LPE(-h) (28)

Recovery of the bottom stress in the original (z,y) system, via (9), yields

+ 4 - + - _
kV(—h):(T er., )hv_j(%)thv

at +a” Sfat —a™\ .
—(——2—)11‘11 + 7 (—-—2——)2 X h¥
—(B++B“)hi+j(ﬁ+ -67)hg (29)

Finally, use of (29) in (4) to eliminate the bottom velocity gives the equivalent 2-D system

JwV+f xV+1r'V=G+¥ +R (30)

** If as suggested above P; and P; are merged, replace R* with RT + ¢* in (22)

)



where the prime quantities ', 7/, ¥' and R' all contain contributions from the bottom
stress: '

f =f—j(3+—'2'-i)£ (31)
oo () (e w
R' =R+ %8 +87)— 96T -57) (34)

As in IW87, 7%, a and A% depend on w + f, N(z), h, and k and thus vary with
frequency as well as (z,y); and all of the vertical detail is embodied without loss of in-
formation in the parameters f’, 7', W', and R'. This 2-D system permits the classical
expression of V in terms of the gravity, wind, and baroclinic forcing:

. ((jwr')(cw'm)—f' x(G+\I"+R')) (35)

V =
(Gw +7/)2 + 72

This may in turn be substituted into the vertically integrated continuity equation to pro-
duce a Helmholtz equation equivalent to (19):
'V¢i> =

(w + TAR(T' + R') — ' x h(¥' + R')
(jw + )% + 2

pucor {2

(jw + 712 + f2
-j{hv.ﬁ¢ids+<

Like (19), this equation allows computation of { as a scalar, 2-D problem subject to
barotropic boundary conditions. While the derivation of (36) is more circuitous, it provides
a simple set of recipes for converting /upgrading any 2-D shallow water solver based on
the linearized harmonic equations to the present 3-I diagnostic level. In addition the
equivalent 2-D momentum equation (30) provides some insight in the departure of the
prime quantities from their conventional 2-D forms, which is not readily obtained from the
more direct form (19).

- V¢e> (36)

SOLUTION PROCEDURE

The numerical solution is implemented in four sequential steps, using a finite element
mesh of linear triangles in the horizontal:

1) The vertical structure is computed in terms of 7/, f’, ¥/ and R’ at each node. The
six solutions Pli‘z‘3 are computed under each node - each requires solution of a 1-D diffusion
equation, which we solve by the Galerkin method on 1-D linear finite elements. Because
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these are tridiagonal systems, they are not a limiting factor in the overall computational
method.

2) The surface elevation is obtained by the Galerkin method on the horizontal grid of
triangles. Expanding the solution in terms of unknown nodal values ¢; and the triangular
basis functions ¢;:

{(z,y) = Z (ids{z,y) (37)
J
we obtain from (36) the matrix equation

[4){¢} = {B} - {F}

(juw+7')ghVe; - £ x ghVp;
Gu+ 7+ £

A = (Jwojidi) + <

-V¢‘s>

B = < [(jw + A + R — £ x h(¥' + R')} . v¢i>

(w472 + f12
F. = fh\'f - D ds (38)

~ In the present implementation (Lynch 1990) all inner products are evaluated numerically,
with quadrature points at the nodes of the triangles. Barotropic BC’s are enforced on this
system 1n any of three ways:

Type I Elevation known. In this case the Galerkin equation weighted by ¢; is removed
in favor of exact specification of ;.

Type I V - i known. In this case the boundary transport integral F; is evaluated
from the given BC.

Type III: Geostrophically balanced transport. In this case neither elevation nor trans-
port are known, but a geostrophic balance is assumed between them:

h\?-ﬁ:%(G+\D'+R’)-§ (39)

where § is the local tangential direction. (Essentially we assume AV -8 = 0.) This relation
is substituted into the transport integral F;; the known parts (¥’ + R') - § are moved into

B;; the unknown part G-§ = —¢ ) (¢ j%"— is moved to the left-side and embedded in the
matrix [A]:

: h 0¢;
Ay = A %%"W
' h P T s
Bij =Bij_f?(‘P +R’)-S¢',’d8 (40)

with [ ds indicating integration over the Type III boundary only.
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3) Velocity profiles. Once ( is available, we differentiate 1t numerically to obtain nodal
values of G by a Galerkin approximation:

D {(9i8;)Gj = —(gV(4i) (41)

1

Nodal quadrature reduces the mass matrix {#:¢;} to a diagonal matrix, greatly simplifying
this calculation. Once the G, are computed, the velocity profiles are either assembled from

memory according to (18); or recomputed by a single tridiagonal calculation under each
horizontal node.

4) Vertical velocities. Finally, we compute the vertical velocities at every node from
the continuity equation (5). To do so requires construction of a 3-D FE mesh in order to
differentiate V(z,y, z), and we follow exactly the procedure given in LW90. The horizon-
tal mesh is projected downward in perfectly vertical lines and each is discretized into the
same number of vertical elements. These are then connected horizontally in the.identical
topology as the original 2-D mesh, thereby filling the volume with 6-node linear elements.
Effectively, this creates an (r,y,¢) coordinate system. Unless otherwise stated, the simu-
lations here employ uniform relative vertical mesh spacing everywhere, i.e. uniform Ao.



BAROCLINIC TEST CASE

Extensive testing of the tidal and wind-driven aspecis of this model has been reported
previously (LW8T), against analytic solutions. Here we add an analytic test of the baro-
clinic response. The test consists of an idealized 2-D tidal front in a stratified shallow sea,
with density field prescribed as

2 - 298P, _ cosimz/h(z)) (42)

Oz

[3V]

Ap(z) = Apyy, <0
Ap(z) = %Ap,(l +cos(rz/L)), 0< z <L (43)

Ap(z)=0, z2L

h is the bathymetric depth; Ap, is the surface-to-bottom density difference in the stratified
region; and s is an adjustable parameter which, for uniform #, sets the cross-front gradient
in depth-averaged density as illustrated in figure la. This case was introduced by Loder
(1980) wherein exact solutions for U(z,z) and V(z,z) are presented under the conditions
of zero depth-integrated cross-front transport and vertically uniform N. As discussed in
Garrett and Loder (1981), these solutions show a sensitivity to vertical viscosity which is
of considerable practical importance. As a result they constitute a useful test problem.

We solve this problem on the mesh depicted in figure 1b, with uniform A, N, k,
and Az. Density is prescribed at the mesh nodes and differentiated numerically. The
barotropic boundary conditions indicated include the requirement of periodicity at the
ends of the mesh, where no other boundary condition is enforced. As in Garrett and Loder
(1981) we normalize the velocity results by — ;f}?%’iﬁ (This along-front speed would be
achieved at the surface for the s = 1, inviscid case.) The analytic solution then depends
uniquely on the dimensionless parameters s, £ = %, and A = f‘;; Figures 2 through 6
compare analytic and numerical velocities sampled at the center of the mesh, with s = 0
and A = VE, for the range of E considered in Garrett and Loder (1981). (Their figure
5.) The dimensional parameters for these runs were g = 9.806, f = .9946 x 10~*, A = 95.,

w=10"12 L =25 x 10%, and Ap, = 1.2, all in MKS units.

Figure 2 displays results for intermediate E. The agreement is clear and satisfying,.
Relative to vertical resoultion, we found previously (LW87) a useful rule of thumb to be 3
to 10 Az per Ekman depth é = /2N/f. The case shown in figure 2 is at the threshold of
this range — 20 equally-spaced vertical elements gives 2.8 Az per §, confirming that rule
of thumb.

Vertically averaging the steady along-front momentum equation provides the useful
relation
&

fl7+g6—+ Vb R, (44)



where V is the along-front bottom velocity. In the analytic case, it is assumed that % = (;

and %2 is determined a priori such that the cross-front transport U also vanishes. With
V

R, = 0 this leads to the interesting analytic property V = %—z = 0 at the bottom. In the
numerical solution however, %3 = ( exactly only along one boundary, and weakly along the
periodic boundaries, leaving internal deviations free to develop. Similarly, the cross-front
transport is required to vanish only along one boundary, and no constraints are enforced
directly on %5. Nevertheless, in Figure 2 both analytic bottom properties V' = 0 and
%—E- = 0 are reproduced nicely.

In figure 3, E is reduced by a factor of 10 with the same vertical resolution, giving
only .89 Az per §. The degradation in accuracy in the bottom boundary layer is apparent,
although the overall solution is not damaged significantly. (Note that the baroclinic forcing
is well-resolved with 20 vertical elements.) Enhanced resolution restores the accuracy at

the bottom - e.g. in Figure 4 we use 100 elements in the vertical, giving 4.5 Az per 4.

The effect of increasing the viscosity is shown in Figure 5. Here we find an error in
the along-front velocity which is nearly uniform with depth; it is the dominant error in
a generally small velocity field. In this case, 20 vertical elements overresolves the Ekman
depth, 8.9 Az per §, and further vertical mesh refinement produces no change in the error.
The horizontal discretization controls this error, which arises in the cross-front barotropic
presure gradient. In Figure 6 we show the effect of halving the horizontal mesh size (four
times as many nodes), which restores satisfying accuracy.

These solutions, along with those for other values of s (Garrett and Loder, 1981)
imply a double-cell circulation on cross-front (z, z) transects, illustrated in figure 7, which is
sensitive to E and the density field. To illustrate the practical significance of this sensitivity,
we introduce an idealized bank topography across the x-axis of the mesh, keeping N and &
constant and imposing the analytic density gradient (42,43) at nodes (with A = k(z)). The
resulting circulation in figure 8 shows the lower cell penetrating the surface on the shallow
side of the front. The primary features — convergence of cross-front surface velocities and
uniformly shoalward bottom flow - are reminiscent of those displayed in Garrett and Loder
(1981, figure 10) and observed at tidal fronts (Simpson 1981, figure 3). **~

*** Note that in figures 7 and 8, vectors are drawn originating at the nodes, which are
marked. The marker on each vector thus indicates its ¢as and its location.
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EXAMPLE APPLICATIONS: THE GULF OF MAINE

As representative applications, we consider the Gulf of Maine region, depicted in figure
9. These waters exhibit several well-documented oceanographic features, including strong
barotropic and baroclinic circulation around Georges Bank. A comprehensive review of
the regional oceanography is available in Backus (1987); a review of previous numerical
modeling efforts is available in Greenberg (1991).

The horizontal finite element mesh appears in figure 10. There are 3156 nodes and
5558 triangular elements. This mesh was derived from the original Greenberg (1979)
topography, enhancing the geometric realism at shoreline boundaries and maintaining the
original open boundary resolution. On the interior, uniform discretization of the barotropic
radius of deformation is achieved on the variable topography by maintaining spatially
uniform /gh/fAz (Henry, 1988). As a result, available detail is concentrated in shallow
and shoreline areas.

On this mesh we have computed three illustrative steady-state solutions, representing
the separate effects of a} barotropic inflow across the Scotian Shelf, b) along-shelf wind
stress, and ¢) summertime density structure on Georges Bank. Boundary conditions for
these are as follows: across the Scotian Shelf we specify the surface elevation; along the
open ocean we maintain constant elevation (note that most of this boundary approximates
the 200 meter isobath); and across the New England shelf flow is allowed to enter or
exit geostrophically. In each case, 10 uniform vertical elements are used throughout, with
constant (N, k) = (.02,.005) in MKS units. The limit of effectively zero frequency is
realized at w = 10~ 2sec™1, All calculations are made on an f-plane, at 43.5° North.,

As a first example, we show the isolated influence of along-shelf barotropic transport
originating on the Scotian Shelf, with no wind and constant density. This solution is driven
as in Wright et al (1986) by specifying a barotropic setup across the Scotian Shelf: ¢ =
0.1m at the coast, decaying exponentially across the shelf with a length scale of 39 km. This
approximates the wintertime geostrophic transport estimated by Drinkwater et al (1979)
for the Halifax section. In figure 11, the solution for { is plotted, and plots for vertically
averaged and bottom velocity appear in figure 12. The flow into the Gulf of Maine from
the Scotian Shelf largely follows the topography, including counterclockwise flows around
Jordan and Georges Basins. The western limb of the Georges Basin flow impinges on the
northern flank of Georges Bank and splits, with one branch circulating clockwise around
the Bank and ultimately exiting through Northeast Channel, and the other exiting directly
through Great South Channel. Overall, the vertically averaged solution strongly resembles
the 2-D response obtained by Wright et al (1986): transports through the Northeast
Channel and across Nantucket Shoals are 2.95 x 10° and 1.40 x 10° m?/s, respectively,
compared with 2.8 x 10° and 1.4 x 10° m?/s in Wright et al.

Owing to the strictly barotropic forcing, the velocity profiles show little departure from
their vertical averages, except for a counterclockwise (downgradient) veering in the bottom
Ekman layer (figure 12b). This generally gives the bottom flow a downslope component,
such as along the Nova Scotia coast and around most of Georges Bank. The surface velocity
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pattern is indistinguishable from the vertically averaged pattern in figure 12a.

As a second example, we have computed the response to a uniform wind stress from
the southwest, the prevailing direction in summer. As in Wright et al (1986) we specify a
corresponding barotropic setdown across the Scotian Shelf to represent the effect of wind
stress forcing on the unmodelled eastern part of the Scotian Shelf. In detail, the wind
stress is 0.1 Pa everywhere, directed “along-shelf” i.e. perpendicular to the two parallel
cross-shelf boundaries; the setdown is 0.1 m at the Nova Scotia coast with a 39 km cross-
shelf exponential decay scale; and density is uniform. The vertically averaged solution
(figure 13a) again shows strong similarity to the 2-D response obtained by Wright et al
(1986), with a general along-shelf flow structured by topography and the coastline. The
cross-shelf circulation includes vertically averaged flows into the Gulf through Northeast
and Great South Channels, which converge along the northern flank of Georges Bank
and produce a flow onto and over the Bank. Guif outflow occurs on and north of Browns
Bank. The Northeast Channel inflow is qualitatively consistent with the observed influence
of along-shelf wind stress (Ramp et al, 1985; Smith 1989; Brooks 1991), although it appears
that improved topographic resolution and baroclinic dynamics are required to produce the
detailed response. Transports through the Northeast Channel and across Nantucket Shoals
are 5.95 x 10° and 4.18 x 10° m3/s, respectively, compared with 5.2 x 10* and 4.5 x 10°
m®/s in Wright et al.

The wind-driven velocities show considerable vertical structure. At the surface (figure
13b), the flow is almost uniformly eastward as expected for the surface Ekman layer, with
notable perturbations near coastal boundaries, on the northern flank of Georges Bank,
and in Northeast and Great South Channels where there are strong additional flow con-
tributions associated with the pressure field. The bottom velocities (figure 13¢) generally
mimic the vertically averaged pattern, except for some relative strengthening of the flow
on central Georges Bank and a general counterclockwise veering, again as expected for the
bottom Ekman layer. The latter results in a pronounced onshore bottom flow along the
Nova Scotia and Maine coasts as part of a classical wind-driven coastal upwelling, consis-
tent with observational suggestions (Petrie et al 1987; Brooks and Townsend 1989) of a
contribution to reduced coastal surface temperature in summer from this process. Over-
all, this solution provides further support for along-shelf wind stress having a significant
influence on low-frequency circulation in the Guif.

Finally, we consider the circulation driven by a representative summer density distri-
bution on Georges Bank. During summer, intense vertical mixing on the Bank maintains
well-mixed conditions there (e.g. Garrett et al 1978), while stratified conditions prevail in
the surrounding waters. As a result, a seasonal tidal front circumscribes the bank (e.g.
Loder and Wright 1983). Here we show the circulation driven by a composite density field
on Georges Bank, with no wind stress and with elevation on the Scotian Shelf boundary
clamped at zero.

The density field was based on monthly-mean values provided by the Marine Environ-
mental Data Service (Department of Fisheries and Oceans, Ottawa, Canada) for specified
depths in 30 polygons over the Bank. (See figure 14.) The monthly means were based
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on all available data through 1987 {(about 650 profiles for July — September), and were
subsequently averaged to obtain means for the three-month summer period. The depths
were at 10m intervals between 0 and 50 m, and at 75 and 100m. The shape and size of
the polygons were specified with consideration to minimizing spatial structure in the to-
pography (and density) within each. A few inversions in the density profiles were removed
and replaced using vertical interpolation or extrapolation.

The vertical structure of the resulting density field is illustrated in figure 15, which
shows a north-south section near 67°W. A vertically well-mixed zone over the Bank
and tidal fronts with strong cross-bank gradients over the Bank’s sides are apparent. The
horizontal structure of the field is illustrated in figure 16 which shows the density difference
between the surface and 50 m (or bottom in shallower areas). The tidal front can be seen to
extend around the Bank, in general agreement with predictions of Simpson and Hunter’s
(1974) depth/dissipation criterion (Loder and Greenberg 1986). The dominant feature
of the associated geostrophic shear (dynamic height) in the upper 40m (not shown) is a
contribution to the summertime intensification of the clockwise gyre around the Bank (e.g.
Butman et al 1987). Additionally, the dynamic height exhibits a local maximum on the
southwest end of the bank and a local minimum on the northeast end, suggesting closed
secondary circulations at those locations. Overall, this density field includes the primary
features of the known frontal structure over the Bank, although the results below indicate
that additional data are required, particularly over the Bank's sides.

This density field was interpolated from the polygon ceniroids onto the horizontal
finite element mesh, for each of the eight level surfaces. Qutside of the polygons and/or
beyond the 150 m i1sobath, a umiform stratification was prescribed, equal to the average of
the polygons on the edge of the data. The finite element density fields were then individ-
ually differentiated on the level surfaces by a Galerkin procedure, to produce nodal values
of density gradient. Finally, these nodal gradients on the eight levels were interpolated
onto the vertical node structure of the FE mesh. The resulting circulation is thus driven
primarily by the frontal structure in isolation.

In figure 17 we show the resulting circulation. The elevation (figure 17a) generally
mutates the dynamic height, including the local extrema on the two ends of the bank. The
surface velocity (figure 17b) shows a strong clockwise circulation, of order 10 — 20¢m/s,
in qualitative agreement with the observed intensification of the gyre in summer. The
flow on the northern flank is intensely confined by the steep topography, and that on
the southern flank is more diffuse, again in qualitative agreement with previous studies.
The two secondary circulation cells evident in the elevation field are clearly visible, as
are smaller, spurious peripheral circulations corresponding to the unphysical truncation
of the density field. Along the northern flank, there are mesh-scale perturbations which
become more pronounced at depth. These are the result of imperfect representation of
the steep topography there, combined with the even coarser resolution of the density field
both across and along the northern flank.

These circulation patterns invite hypotheses with implications for the ecology of the
Bank, which must await a complete sensitivity study relative to forcing, boundary condi-
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tions, vertical mixing, and spatial resolution.

DISCUSSION

The value of a diagnostic computation lies in the balance between reduced physics
and reduced computational burden. On the physical side, it is crucial to capture as many
of the first-order effects of large-scale 3-D flows over topography as possible. We find the
marriage of the geometrically flexible FEM with the linearized equations provides useful
diagnostic insight, particularly as a prelude to more comprehensive nonlinear simulation.
On the cost-effectiveness side of the balance, the present 3-D algorithm scales effectively
as a 2-1) FEM problem, which can be accomodated readily on affordable workstations.

The Gulf of Maine results shown here are strictly exploratory. We are presently exam-
ining their sensitivity to topographic resolution, open boundary location and conditions,
vertical mixing parameters, etc, (see e.g. Hukuda et al 1989) and quantifying the nonlinear
imbalances implied by our linearized solutions. Particularly in 3-D, it is crucial to establish
this basic understanding prior to full, nonlinear simulation of all effects coupled.
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LIST OF FIGURES

Figure la. Idealized tidal front density field (equations 42, 43). From Loder (1980).

Figure 1b. 50 km x 25 km mesh and boundary conditions for the analytic tidal front
problem.

Figure 2, Comparison of numerical (solid line) and analytic (circles) baroclinic solutons
for idealized tidal front. Analytic solution is from Garrett and Loder (1981). Normalized
(a} cross-front and (b) along-front velocities are plotted versus normalized depth. E =
-}1{—, =0.01; A= INE = \/E; s = 0; 20 vertical elements.

Figure 3. Same as Fig. 2 except E = .001. A = \/E; 8 = 0; 20 vertical elements. The
bottom boundary layer is underresolved. (a) cross-front and (b) along-front velocities.

Figure 4. Same as Fig. 3 except the vertical resolution is increased to 100 elements.
E =001, A =VE; s =0. Accuracy in the bottom boundary layer is restored. (a)
cross-front and (b) along-front velocities.

Figure 5. Same as Fig. 2 except E = 0.1. X = VE; s = 0; 20 vertical elements.
Note the barotropic error in the along-front velocity, and the loss of the analytic property

= %—Z = 0 at the bottom. {a) cross-front and (b) along-front velocities.

Figure 6. Same as Fig. 5 except the horizontal resolution is doubled. E =0.1. A = VE;
s = 0; 20 vertical elements. The barotropic error is removed. (a) cross-front and (b)
along-front velocities.
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Figure 7. Cross-front transect showing vertical and cross-front velocities. Vertical distor-
tion by 500; s = 0.0; L = 30km; E = .01; ¥ =.00125m/s; A = .07559.

Figure 8. Cross-front transect showing vertical and cross-front velocities as in Garrett and
Loder (1981), in the presence of idealized bank topography. Note the double-gyre structure
and convergence of surface velocities. Vertical distortion by 500. s = 0.5; L = 30km; N
and k are constant with £ = .01 at the deep end and k = .00125m/s.

Figure 9. Location map for the Gulf of Maine region.

Figure 10. Iinite element mesh with 3156 nodes and 5358 triangular elements.

Figure 11. Elevation response {cm) to barotropic Scotian Shelf inflow.

Figure 12. Response to Scotian Shelf inflow. (a) vertically averaged velocity, (b) near-
bottom velocity. Bathymetric contours are given in meters.

Figure 13. Response to uniform along-shelf wind with 10em exponential setdown across
the Scotian Shelf. (a) vertically averaged velocity, (b) surface velocity, {(¢) near-bottom
velocity.

Figure 14. Map of Georges Bank region showing polygons used in density field preparation
and bathymetry.
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Figure 15. Vertical structure of summer density on Georges Bank. The transect is from
South (left) to North (right) near 67° W. Density units are o,; distance, km; depth, m.

Figure 16. Vertical density difference in oy units, between the surface and 50 m (or bottom
where shallower) on Georges Bank from the averaged July-September dataset. The location
of the tidal front, taken as 0.2 < Aeg, < 1.5, is also shown.

Figure 17. Computed response for summer density distribution. (a) surface elevation (cm);
(b) surface velocity.
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Figure la. Idealized tidal front density field (equations 42, 43). From Loder (1980).
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Figure 1b. 30km x 25km mesh and boundary conditions for the analytic tidal front
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Figure 8. Cross-front transect showing vertical and cross-front velocities as in Garrett and

Loder (1981), in the presence of idealized bank topography. Note the double-gyre structure
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Figure 10. Finite element mesh with 3156 nodes and 5358 triangular elements.



Figure 11. Elevation response (em) to barotropic Scotian Shelf inflow.
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Figure 13¢c Wind-driven bottom velocity



region showing polygons used in density field preparation

Figure 14. Map of Georges Bank
and bathymetry.
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Figure 15. Vertical structure of summer density on Georges Bank. The transect iz from
South (left) to North (right) near 67° W. Density units are oy; distance, km; depth, m.
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